WASTE WOOD-FIRED POWER PLANT, 40 MWe

Teeside
Port Clarence, England

The project developers Eco2 and Temporis Capital secured the site and planning consent to develop the Teesside biomass facility in Port Clarence. Following engagement on Eco2’s Margam biomass project in South Wales, Babcock & Wilcox Vølund working with Lagan Construction Group were awarded an EPC/turnkey contract for the facility without going to tender. To further de-risk the project for the plant owner, Glenmont Partners, who secured financing for the scheme and purchased the project at financial close, B&W Vølund entered a 15-year contract to provide full operation and maintenance services.

The new biomass plant will be capable of processing waste wood, including contaminated wood and fuel containing metals, with no pre-treatment required. It will generate 40 MW of green electricity, which is enough to supply 78,000 homes, and provides local employment opportunities through the construction and operational phases.
WASTE WOOD-FIRED POWER PLANT, 40 MWe

Teeside
Port Clarence, England

The solution
The key reason why B&W Vølund have been selected is based on B&W Vølund’s solution-based approach, which entails de-risking the project for the plant owner. The key features of the solution are:
- EPC solution
- UK construction partner
- Technology
- Funding support
- Construction programme
- Operations and maintenance (O&M)

All the above significantly de-risk the project for the project developers and the plant owner.

The technology
B&W Vølund’s technology concept is based on in-house knowledge and many years of experience and provides high efficiency, availability and performance combined with a robust design to give an extended design life.

B&W Vølund’s solution is based on the patented DynaGrate® technology, providing excellent fuel flexibility. The key benefits for the plant owner are:
- References – The DynaGrate® is operating in a number of plants accepting a wide range of fuels which is important to plant owners and lenders.
- Few fuel constraints – No pre-treatment of the waste wood is required whether contaminated and/or has metals within the same. It also potentially allows a wide range of alternative fuels to be processed in the future, such as commercial and industrial residual waste, SRF/RDF or other waste streams, mitigating the risk if:
  - the cost of fuel sourcing fuel increases.
  - the fuel supply changes over the life of the project.
  - a contracted fuel supplier exits the market.
Also, non-compliant fuels will not be the cause of operational issues.

<table>
<thead>
<tr>
<th>Plant design data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process parameters</td>
</tr>
<tr>
<td>Waste capacity</td>
</tr>
<tr>
<td>Heat value</td>
</tr>
<tr>
<td>Steam output</td>
</tr>
<tr>
<td>Steam temperature</td>
</tr>
<tr>
<td>Steam pressure</td>
</tr>
<tr>
<td>Boiler outlet flue gas temp.</td>
</tr>
<tr>
<td>Feed water temperature</td>
</tr>
</tbody>
</table>

* All values refer to 11% O₂ dry gas

Improved and simplified fuel handling
- No requirement for pre-treatment – space and OPEX optimisation.
- 100% fuel utilisation – no reject fuel from any pre-treatment.
- On-site layout and logistics simplified – single point handling.

Fly ash disposal costs significantly reduced
Compared to other grate technologies, the DynaGrate® combustion technology produces significantly less fly ash reducing the generation of secondary waste to landfill.

Full recovery of ferrous metal from bottom ash
It is possible to recover all ferrous metals from the bottom ash by applying simple back-end magnetic separation.

Operation and maintenance
B&W Vølund have signed three 15-year O&M contracts in the UK, including for the Teesside plant in Port Clarence. All of these plants and future UK plants will benefit from B&W Vølund having a UK-focused structure in place with the added benefits of prompt servicing and provision of spares.